
Security-Assessment
Security test of Example - Web Application

Recipient:

Example GmbH
Example Str. 12
1234 Example

Classification: Confidential
Date: 13.06.2025
Version: 1.0

Contact at A1 Digital International GmbH & Co KG:

Alice Codex
ask.security@a1.digital

+431234567890
Department Security

Lassallestraße 9, A-1020 Wien

1 Change record

Date Version Description Author

09.06.2025 0.1 Initial Creation Alice Codex

13.06.2025 0.9 Review Trent Trustworthy

13.06.2025 1.0 Published Alice Codex

Table 1 - Change record

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 2 of 36

Table of Contents
1 Change record 2

2 Management Summary 4

2.1 Results . 4

2.2 Recommended next steps . 4

2.3 Overview of weaknesses . 6

2.4 Weakness categorisation . 7

2.5 Disclaimer . 8

3 Scope 9

3.1 Systems tested . 9

3.2 User accounts used . 9

4 Procedure 10

4.1 Risk assessment according to CVSSv3.1 . 10

5 Identified weaknesses 11

5.1 Blind SQL Injection . 11

5.2 Cross-Site Request Forgery (CSRF) . 14

5.3 Subdomain Takeover . 16

5.4 Reflected Cross-Site-Scripting (XSS) . 18

5.5 Outdated Tomcat Installation . 21

5.6 Missing Security Headers . 23

5.7 Weak SSL/TLS Configuration . 25

6 Appendix 27

6.1 Contact persons . 27

6.2 CVSS v3.1 metrics . 28

6.3 Text representation of CVSS v3.1 scores . 30

6.4 List of Tables . 31

6.5 List of Figures . 31

6.6 OWASP Testing Guide Version 4.2 . 32

7 Imprint 36

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 3 of 36

2 Management Summary
The results of the security test are summarised briefly below. More detailed descriptions of the individual
specific aspects with references to additional resources as well as recommended countermeasures can be
found in chapter 5.

2.1 Results
A blind SQL injection vulnerability was detected in the login function of the webshop, which allowed
unauthorized users to access, modify or delete user and product data stored in the database. This
vulnerability could be used to compromise the data of over 1,000 shop users, including sensitive or
personally identifiable information like addresses and password hashes.

The subdomain takeover.example.com had a CNAME set to exampletrafficmanager.trafficmanager.net at the
time of the assessment, which was not allocated, and could therefore be registered via Microsoft Azure. This
means that the subdomain takeover.example.com could fall under the control of attackers and be used for
further attacks, like phishing campaigns.

A reflected cross-site scripting (XSS) vulnerability was identified where malicious JavaScript code could be
injected into the application. Attackers would be able to steal session information by successfully exploiting
this vulnerability and use it to take over other users' accounts.

The webshop system appeared to be using an outdated version of Tomcat that had at least one known
vulnerability. This version contains known weaknesses which may allow access to users' data.

The functionality of the webshop that allows users to edit their profile did not have cross-site request forgery
protection. As a result, attackers have the ability to cause logged-in victims to take actions on their account
without their knowledge or consent. For example, attackers could change the victim's email address to
subsequently change the password and take over the account.

It was determined that the affected systems used insecure SSL/TLS configurations. An attacker with access
to the network trafÏc could potentially decrypt the transmitted packets, and thus get access to sensitive user
usernames and passwords.

It was discovered that affected web applications had not consistently implemented common security
headers. Setting security headers can increase the overall security of a web application and make it more
difÏcult for attackers to carry out attacks such as cross-site scripting (XSS) or man-in-the-middle.

2.2 Recommended next steps
Recommendations for the next 3 months:

The SQL injection vulnerability should be resolved by using prepared statements in all queries.

It should be verified that no DNS CNAME records are pointing to unregistered domains.

It should be evaluated whether recommended security headers can consistently be set for all web
applications.

Recommendations for the next 6 months:

It should be ensured that all software in use is up-to-date.

All user input should be validated and properly encoded before being output back to a user (Input
Validation, Output Encoding).

All authenticated user interactions should be equipped with CSRF protection.

•

•

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 4 of 36

HTTPS and other encrypted protocols should be configured to only support secure and modern cipher, key
exchange and MAC algorithms.

Recommendations for the next 12 months:

An update process should be established for all software in use.

The newly established security procedures should be tested for effectiveness.

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 5 of 36

2.3 Overview of weaknesses
The following table provides an overview of the identified weaknesses and an estimate by A1 Digital
International GmbH & Co KG of the effort required to implement countermeasures. Figure 1 shows a
schematic representation of the identified weaknesses.

Weakness Risk (CVSS) Countermeasures

Blind SQL Injection Critical (10.0) Medium

Cross-Site Request Forgery (CSRF) High (7.1) High

Subdomain Takeover Medium (6.5) Low

Reflected Cross-Site-Scripting (XSS) Medium (6.1) Medium

Outdated Tomcat Installation Medium (5.9) Medium

Missing Security Headers Low (3.7) Medium

Weak SSL/TLS Configuration Low (3.7) Low

Table 2 - Overview of weaknesses

The penetration test findings indicated the detection of vulnerabilities, encompassing 1 Critical, 1 High, 3
Medium and 2 Low severity issues:

Figure 1 - Distribution of identified vulnerabilities

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 6 of 36

2.4 Weakness categorisation
A coarse categorisation of the identified weaknesses was made to get an overview of the areas in which the
most security-relevant findings were identified. The categories of weaknesses are as follows:

Configuration Issue: Errors in the configuration of software or hardware components.

If repeated weaknesses have been identified within this category, training for system administrators
on how to securely configure the components they support can help.

Outdated Software: Outdated software components with known security-relevant problems.

If outdated software is a frequently identified problem, it is recommended to establish a continuous
update and patch management process to install security-critical updates in a timely manner.

Input Validation/Output Encoding: Missing validation of user inputs or missing correct encoding of
outputs of the software.

Frequent errors in this category are likely related to a lack of secure coding training. Regular secure
coding training for software developers could increase security and software quality.

Other: Findings that do not fall into one of the three categories above.

The following table identifies the categorisation of weaknesses within the identified findings.

Weakness Category

Blind SQL Injection Input Validation / Output Encoding

Cross-Site Request Forgery (CSRF) Other

Subdomain Takeover Configuration Issue

Reflected Cross-Site-Scripting (XSS) Input Validation / Output Encoding

Outdated Tomcat Installation Outdated Software

Missing Security Headers Configuration Issue

Weak SSL/TLS Configuration Configuration Issue

Table 3 - Weakness categorisation

Figure 2 - Chart of weakness count per Category

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 7 of 36

2.5 Disclaimer
The effort for this test was estimated using a time box approach, i.e., only weaknesses within the agreed time
window were identified. The aim was to identify and document as many security-relevant weaknesses as
possible in the systems being tested. However, we do not assume any liability for completeness of the
findings listed in the report.
The test provides a snapshot at the time of the security assessment, so future IT security risks cannot be
derived from it.

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 8 of 36

3 Scope
Example GmbH commissioned A1 Digital International GmbH & Co KG to perform a security test of the
systems listed below.

The security test took place between 09.06.2025 and 13.06.2025. The security assessment was conducted
over a period of 10 person days, a more detailed description regarding the procedure can be found in
chapter 4.

3.1 Systems tested
The following systems were considered within the assessment.

IP Hostname

203.0.13.64 www.example.com

203.0.13.65 shop.example.com

Table 4 - Systems tested

3.2 User accounts used
No accounts for the web applications were provided.

To perform additional security checks, user accounts were created in the webshop (shop.example.com)
during the assessment using usernames starting with A1SecurityAssessment.

The aforementioned users accounts must be deleted / deactivated after the security assessment.

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 9 of 36

4 Procedure
To cover the widest possible range of possible weakness categories, the test was conducted following the
Open Web Application Security Project (OWASP) Testing Guide Version 4 (see chapter 6.6). The aim was to
identify all security-relevant weaknesses that were present in the systems at the time of the test.

A number of criteria were defined in advance to enable classification of penetration tests that have been
carried out. The following figure is based on the study ”implementation concept for penetration tests” 1 from
the BSI and is intended to reflect the procedure within this test.

Figure 3 - Implementation concept for penetration tests 1

4.1 Risk assessment according to CVSSv3.1
The Common Vulnerability Scoring System (CVSS) provides the ability to identify and score the underlying
characteristics of a weakness. The result is a numerical value that can range between 0.0 and 10.0, with 10.0

being the highest and thus most critical value. For a detailed description of the CVSS metrics, see chapter
6.2. To be able to express the risk in words, five different value ranges are defined, which are described in the
chapter 6.3. Accordingly, a risk can be classified as ”none”, ”low”, ”medium”, ”high” and ”critical”.

1. Base of Information

2. Agressiveness

3. Scope

4. Procedure

5. Technology

6. Starting point

Penetration Test

Black Box Gray Box White Box

Passively Scanning Careful Gauging Aggressive

Complete Limited Focused

Hidden Apparent

Network Access Other Communication Physical Access Social Engineering

From Outside From Inside

1. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Penetrationstest/penetrationstest.pdf

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 10 of 36

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Penetrationstest/penetrationstest.pdf

5 Identified weaknesses
The weaknesses identified during the test are described below and assigned a risk rating. This risk
assessment is carried out according to the CVSSv3.1 standard and was performed by the assessors to the
best of their knowledge and belief. The risk assessment may therefore differ from the customer's
assessments, as in most cases the assessor does not have sufÏcient background knowledge to perform a
specific business risk assessment.

Each identified weakness described includes recommended countermeasures and references to external
resources for further information.

5.1 Blind SQL Injection

CVSS Score 10.0 (Critical)

CVSS Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H (show in first.org)

Affected Systems

shop.example.com (203.0.13.65:443)

Description

During the security assessment, a blind SQL injection vulnerability was detected in the login function of the
webshop, which allowed unauthorized users to access, modify or delete user and product data stored in the
database. This vulnerability could be used to compromise sensitive and personally identifiable information of
over 1,000 shop users, including their addresses and password hashes.

Recommendations

Most SQL injection vulnerabilities can be prevented by using parameterized queries (also known as
prepared statements) instead of string concatenation within the query.

Prepared statements separate the SQL queries to the user supplied parameters they receive, making it
impossible to escape the query and modify its purpose.

This should be done in all SQL queries used in all the applications of the company to ensure that no
endpoint remains vulnerable.

If the use of prepared statements is not possible in this application, ensure that all user input is properly
sanitized before using it within an SQL query.

More information about SQL injection attacks and how to fix them can be found in the References.

Technical Description

SQL injection is a web application vulnerability that allows attackers to send queries directly to the database
and therefore gain unauthorized access to it. The vulnerability occurs when the user's input data is not
sufÏciently validated on the server side and is passed directly to the database. The following illustration
shows an example of how an SQL injection can be exploited.

•

•

◦

◦

•

◦

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 11 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

Figure 4 - All user data is queried by exploiting an SQL injection vulnerability

During the assessment, it was detected that the login function of the webshop was affected by an SQL
injection vulnerability. An attacker could send a crafted request with special characters on the username

POST parameter that would modify the intended SQL query and allow running arbitrary read-queries on the

SQL server. As there was no direct output from the query other than whether the user successfully logged in
or an error was caused, this can be classified as error based SQL injection.

The following figure identifies the request to the application, which causes an SQL error:

Figure 5 - Request to the application which causes an SQL error

The next figure demonstrates the SQL syntax error in the application caused by the above query, indicating
that the request was not properly sanitized and broke the query process:

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 12 of 36

Figure 6 - Response showing the SQL error store.example.com

In the case of this vulnerability, no valid user account was necessary in order to exploit this vulnerability.

The following command allowed to log into the application without knowing the password of a user:

curl -X POST -F 'username=admin%27AND%271%27%3D%271%27---' -F 'passwd=aaa'
'https://shop.example.com/cgi-bin/badstore.cgi?action=login'

While attackers cannot retrieve the direct output of the query, they can enumerate their result (for example a
dump of the whole database), character by character. This requires a large amount of queries, but can be
automated with tools like sqlmap. With this, it was possible to extract the data of more than 1000 store
users, and to access full names, address details and hashed passwords:

Database: storedb
Table: userdb
[6 columns]
+----------+--------------+
| Column | Type |
+----------+--------------+
email	varchar(40)
fullname	varchar(50)
address	varchar(50)
passwd	varchar(32)
pwdhint	varchar(8)
role	char(1)
+----------+--------------+

As shown below, more than 1000 user data points are available in the database:

Database: storedb
+--------+---------+
| Table | Entries |
+--------+---------+
| userdb | 1241 |
+--------+---------+

Furthermore, it was possible to chain multiple queries, including INSERT , UPDATE and DELETE queries, using a
semicolon in the username parameter. Due to this, an attacker could arbitrarily modify or delete any data
stored in the database.

References

https://owasp.org/www-community/attacks/SQL_Injection

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 13 of 36

https://owasp.org/www-community/attacks/SQL_Injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

5.2 Cross-Site Request Forgery (CSRF)

CVSS Score 7.1 (High)

CVSS Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:L/CR:H/IR:H (show in first.org)

Affected Systems

shop.example.com (203.0.13.65:443)

Description

At the time of testing, the functionality of the webshop that allows users to edit their profile did not have
cross-site request forgery protection. As a result, attackers have the ability to cause logged-in victims to take
actions on their account without their knowledge or consent. For example, attackers could change the
victim's email address to subsequently change the password and take over the account.

Recommendations

CSRF protection should be implemented.
This is usually solved using so-called CSRF tokens, which are assigned to a session and are sent with
every write request as a body or header value and validated on the server side.

Since attackers do not know the value of the CSRF token, they no longer have the opportunity to carry
out this attack.

Another possibility would be to validate the 'origin' of the request.
The Referer or Origin HTTP headers can be used to identify where a request comes from.

Ensuring that the request comes from a trusted site can be used to prevent this kind of attack.

It should be evaluated whether session-relevant cookies can be equipped with the SameSite attribute.
This cookie attribute prevents the browser from sending cookies if the requests come from external
sites.

Changing security-critical information, like the email address or the password, should only be possible
after prior entry of the current password.

If this is not possible, after the change of the email address, an information mail should be sent to the
old email address with the option to revert.

Technical Description

Cross-site request forgery (also known as CSRF) is a web security vulnerability that allows an attacker to trick
users into performing actions they do not want to perform.

To do so, attackers must have control over a (possibly third-party) website that is used by the victim, or lure
the victim onto said website. Once visited, this site contains malicious code that performs requests to the
affected application in the background of the browser. If the victim is logged into the vulnerable service when
this happens, these requests contain the session information of the victim and are accepted by the server as
if done by the victim itself. Due to this, an attacker can make changes to the user's account or perform other
actions in their name without the user's knowledge or consent. The following example will illustrate the
exploitation of a CSRF vulnerability:

•

•
◦

◦

•
◦

◦

•
◦

•

◦

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 14 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:L/CR:H/IR:H

Figure 7 - Illustration of Cross-Site Request Forgery

The email change function of the webshop application did not have CSRF protection implemented. This
allows attackers to create a malicious website that, once visited, would send a request to the example
website in the name of the user, and change the user's email to the email of the attacker. Then, the attacker
could use the password reset functionality to reset the user's password and take over the account.

The following form demonstrates the attack:

<form action="https://shop.example.com/account/edit_profile" method="post" name="main">
<input type="hidden" name="email" value="attacker@evil.com">
<input type="hidden" name="btn_save" value="Save">
</form><script>document.main.submit();</script>

If a logged-in user visited a website that contained this code, their email on the webshop account would be
changed to attacker@evil.com , which could then lead to a take-over of their account.

References

https://owasp.org/www-community/attacks/csrf

https://wiki.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

https://portswigger.net/web-security/csrf

https://owasp.org/www-community/SameSite

•

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 15 of 36

https://owasp.org/www-community/attacks/csrf
https://wiki.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://portswigger.net/web-security/csrf
https://owasp.org/www-community/SameSite

5.3 Subdomain Takeover

CVSS Score 6.5 (Medium)

CVSS Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N (show in first.org)

Affected Systems

takeover.example.com

Description

The subdomain takeover.example.com had a CNAME set to exampletrafficmanager.trafficmanager.net at the
time of the assessment, which was not allocated, and could therefore be registered via Microsoft Azure. This
means that the subdomain takeover.example.com could fall under the control of attackers and be used for
further attacks, like phishing campaigns.

Recommendations

All unused DNS entries should be removed.

If this is not possible, the CNAME should be taken over again to prevent it from being taken over by
external parties.

Furthermore, a policy defining a lifecycle management process for domains should be created or
adapted.

An inventory of all domains and subdomains in use should be kept and maintained.

Ensure that all changes made to the infrastructure don't leave domains pointing to IP addresses or
domains that are no longer in control of the company.

Technical Description

It was detected that the domain takeover.example.com was configured with a CNAME record from the domain
exampletrafficmanager.trafficmanager.net :

nslookup takeover.example.com 8.8.8.8
Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
takeover.example.com canonical name = exampletrafficmanager.trafficmanager.net.
Name: exampletrafficmanager.trafficmanager.net
Address: 54.192.96.244

This subdomain was not registered by anyone, and it was possible to register it using Microsoft Azure and get
full control of the takeover.example.com subdomain. To achieve this, Microsoft Azure was used to create a
Web App and a TrafÏc Manager Profile with the name exampletrafficmanager , to which the Web App was
added as an endpoint:

Figure 8 - Subdomain Takeover of https://takeover.example.com

Attackers could use this vulnerability in order to create phishing campaigns that would use the trust on the
domain of the company in order to make the attack more believable.

•

•

•

•

◦

◦

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 16 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

References

https://blog.sweepatic.com/subdomain-takeover-principles/

https://0xpatrik.com/subdomain-takeover-basics/

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 17 of 36

https://blog.sweepatic.com/subdomain-takeover-principles/
https://0xpatrik.com/subdomain-takeover-basics/

5.4 Reflected Cross-Site-Scripting (XSS)

CVSS Score 6.1 (Medium)

CVSS Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N (show in first.org)

Affected Systems

www.example.com (203.0.13.64:443)

Description

A reflected cross-site scripting (XSS) vulnerability was identified where malicious JavaScript code could be
injected into the application. Attackers would be able to steal session information by successfully exploiting
this vulnerability and use it to take over other users' accounts.

Recommendations

It should be ensured that user input is validated and encoded in the source code when being output (Input
Validation, Output Encoding).

For output encoding, special attention should be paid to the following characters:

Character Encoded Character

& &

< <

> >

" "

' '

/ /

Table 5 - Output encoding of special
characters

Before using user input in the JavaScript code of the site, it should be escaped.

More information about XSS vulnerabilities and more detailed information on how to properly fix them can
be found in the References section.

Technical Description

Cross-site scripting (XSS) attacks can be used by attackers to execute malicious JavaScript code in the
context of a web application. XSS attacks occur when an attacker introduces malicious JavaScript code in the
vulnerable website that runs on the browser of a victim. In principle, a distinction can be made between 3
different types of XSS:

Reflected Cross-Site Scripting

Stored Cross-Site Scripting

DOM-Based Cross-Site Scripting

In Reflected XSS, the malicious JavaScript code is usually passed to the web server by the attacker via GET or
POST parameters. The web server processes the data and returns the content of the passed parameters
unfiltered back to the end user. Thus, an attacker can send the victim a link, for example, that once visited will
execute the malicious code on its browser in the context of the user of the victim.

The following illustration shows how a Reflected XSS attack can take place:

•

•

•

•

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 18 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

Figure 9 - Illustration of Reflected XSS

In Stored XSS, the attacker stores the malicious JavaScript code in the vulnerable site. In contrast to
Reflected XSS, an attacker does not need to insert a link to the victim - in most cases, a call to the vulnerable
website is sufÏcient for the malicious JavaScript code to be executed.

With DOM-Based XSS, the malicious JavaScript code is only processed in the Document Object Model (DOM)
of the browser - the malicious code usually never reaches the server. The attacker can, for example, pass the
JavaScript code via a so-called anchor in the URL. An example would be http://www.some.site/
site.html#default=<script>alert(document.cookie)</script> .

In the course of the assessment, a reflected cross-site scripting vulnerability was identified in the Example

Application website. The following parameters were vulnerable at the time of the test:

search_query

As this is a reflected cross-site scripting vulnerability, the injected JavaScript code is executed when the
following URL is called:

https://www.example.com/app?search_query="><script>alert(document.cookie)</script>

The following screenshot shows the execution of JavaScript code in the context of the affected website.

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 19 of 36

Figure 10 - Reflected XSS on example.com

Attackers could potentially use this in order to retrieve session information of the victim and take over the
account. By gaining full access to an account, attackers have the ability to perform any action and access any
data that the victim has access to.

References

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

https://owasp.org/www-community/attacks/xss/

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 20 of 36

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/attacks/xss/

5.5 Outdated Tomcat Installation

CVSS Score 5.9 (Medium)

CVSS Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L/E:U/RL:O/RC:U (show in first.org)

Affected Systems

shop.example.com (203.0.13.65:443)

Description

At the time of the assessment, the WebShop system appeared to be using an outdated version of Tomcat
that had at least one known vulnerability. This version contains known weaknesses which may allow access to
users' data.

Recommendations

It is recommended to upgrade the Tomcat installation at least to the latest version of Tomcat 8.5.

A policy detailing a continuous update process of all systems in the company should be established.

Available updates for products used in the company should be monitored periodically.

The patch status of all machines and services of the company should be centrally tracked.

All security-critical updates should be guaranteed to be installed in a timely manner.

If updates are not possible, affected systems should be isolated:

Access should be restricted strictly to only the users that need it.

This restriction should happen on a network based level, so that all access to the affected systems is
blocked as far as possible.

Only generic error messages should be supplied to end users.

Avoid to give specific information regarding the software or hardware helps to prevent fingerprinting
of the services in use.

Technical Description

During the test, it was possible to retrieve the Tomcat version running on https://shop.example.com by
accessing a non-existent page, which returned an error message that included the Tomcat version used. This
can be seen in the following figure:

Figure 11 - Tomcat version of the webshop server

•

•

•

◦

◦

◦

•

◦

◦

•

◦

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 21 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L/E:U/RL:O/RC:U

Version 8.0.41 of Tomcat contains several known weaknesses, which could potentially be abused by
attackers to carry out further attacks in order to gain access to private data of logged on users. Furthermore,
Tomcat 8.0 is no longer supported, and will not receive further security patches. More information regarding
the known weaknesses in this Tomcat version can be found in the references.

References

https://tomcat.apache.org/security-8.html

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 22 of 36

https://tomcat.apache.org/security-8.html
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

5.6 Missing Security Headers

CVSS Score 3.7 (Low)

CVSS Vector string CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N/E:U/RL:O (show in first.org)

Affected Systems

www.example.com (203.0.13.64:443)

shop.example.com (203.0.13.65:443)

Description

In the course of the security assessment, it was discovered that affected web applications had not
consistently implemented common security headers. Setting security headers can increase the overall
security of a web application and make it more difÏcult for attackers to carry out attacks such as cross-site
scripting (XSS) or man-in-the-middle.

Recommendations

It should be evaluated whether the recommended security headers can consistently be set for all web
applications.

In particular, the content security policy (CSP) can provide good protection against cross-site scripting
attacks. However, the configuration of the CSP can be complex and may cause errors in the web
application. Therefore, it is recommended to initially test the CSP with "Report-Only".

Technical Description

In the following, the security headers that were not (consistently) set at the time of the penetration test are
described in detail.

The Content-Security Policy header is used to restrict, report and prevent e.g. cross-site scripting and
framing attacks via access policies. The source restriction should only allow directly controlled addresses,
the "unsafe" options are strongly discouraged. For now, start with "Report-Only" and "self" as origin to see
which external requests are needed. After a more detailed specification of the origins it is recommended to
enforce the CSP.

The X-Frame-Options header specifies whether the page may be included in another page as a "frame",
"iframe" or "embed". This prevents so-called "clickjacking" attacks, in which users can be tricked into clicking
on things that can be hidden behind other elements on foreign websites. It is recommended to at least
prevent embedding of pages from external domains.

The X-Content-Type-Options header can disable automatic detection and correction of MIME types for
JavaScript and CSS files in the browser with the "nosniff" option, thus blocking vulnerabilities where supposed
JavaScript can be loaded from other files. It is advised to enable the header with "nosniff".

The Referrer-Policy header specifies which "referers" (sic!) should be sent for which requests. This can be
used to prevent exact information about the origin of users from being passed on to external pages or pages
without encryption. This information could be problematic if it contains session tokens, names, IDs and other
sensitive data. It is advised to send the header with "strict-origin-when-cross-origin" to minimize user
tracking.

The Permissions-Policy header controls which JavaScript sources are allowed to use which browser features
from the page. Among them are the use of the camera, microphone, geolocation and payment requests,
which should be disabled by default. It is advised to disable as much as possible, as it makes it more difÏcult
for attackers to collect data about users.

The HTTP Strict-Transport-Security header protects against encryption by specifying that a domain and
optionally its subdomains may only be accessed in encrypted form for a certain period of time. For this

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 23 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N/E:U/RL:O

purpose, the Strict-Transport-Security header must be sent with a time for which this restriction is to apply. It
is recommended to set this header with a time of one year.

The following table provides a brief overview of which headers are set on the affected hosts.

Host
Content-
Security-

Policy (CSP)

X-Frame-
Options

X-Content-
Type-

Options

Referrer-
Policy

Permissions-
Policy

HTTP-Strict-
Transport-

Security (HSTS)

https://
www.exa

mple.com
🚫 ⚠️ ⚠️ 🚫 🚫 ✅

https://
shop.exa
mple.com

🚫 ✅ ✅ 🚫 🚫 ✅

Table 6 - Set Security Headers

Legend The graphical categorization of the upper table was done in two different levels:

✅ The header is correctly set and works as intended.

🚫 The header is not set.

⚠️ The header is misconfigured.

References

https://securityheaders.com/

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

https://www.owasp.org/index.php/Security_Headers

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

•

•

•

•

•

•

•

•

•

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 24 of 36

https://securityheaders.com/
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Security_Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

5.7 Weak SSL/TLS Configuration

CVSS Score 3.7 (Low)

CVSS Vector string CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N/E:U/RL:O (show in first.org)

Affected Systems

www.example.com (203.0.13.64:443)

shop.example.com (203.0.13.65:443)

Description

During the assessment it was determined, that the affected systems used insecure SSL/TLS configurations.
An attacker with access to the network trafÏc could potentially decrypt the transmitted packets, and thus get
access to sensitive user usernames and passwords.

Recommendations

Insecure cipher suites should be deactivated, as there are known vulnerabilities and attacks for these
protocols.

If possible, only the currently secure versions TLS 1.2 and TLS 1.3 should be used.

Instructions for secure TLS configuration can be obtained from the References section.

Technical Description

The Hypertext Transfer Protocol (short HTTP) is a protocol to transfer data between two systems. HTTP is a
plain-text protocol, which means, it does not support encryption on its own. To protect data in transfer over
the internet there are standards which work as an extension to HTTP and encrypt the transferred data, like
Hypertext Transfer Protocol Secure (HTTPS). HTTPS uses SSL/TLS to implement the encryption during the
transfer. An attacker could still access sensitive data by exploiting known vulnerabilities in the SSL/TLS
protocol and thus breaking the encryption.

During the assessment some systems were identified using insecure SSL/TLS configuration.

The findings of the assessment were as follows:

Using SSL: At the time of testing, the affected system supported versions of the SSL protocol, which use
obsolete encryption protocols that should no longer be used in production environments. Attackers with
access to network trafÏc could attempt to break the weak encryption and thus gain access to sensitive data.

Use of weak encryption methods: At the time of testing, the affected system supported TLSv1.0 with the
RC4 cipher. RC4 is considered insecure and should be disabled. TLSv1.0 also contains ciphers considered
insecure and should be disabled if possible.

No use of TLSv1.2 or TLSv1.3: The affected system did not support TLSv1.2 or TLSv1.3 at the time of testing;
these new modern protocols should be supported whenever possible to ensure a secure connection for
users.

No support of so-called AEAD cipher suites: AEAD (Authenticated Encryption with Associated Data) ciphers
are cipher suites that are considered secure. For example, TLSv1.3 now only relies on AEAD cipher suites.

A detailed overview of the affected systems and their TLS and SSL versions used at the time of testing can be
found in the following table.

•

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 25 of 36

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N/E:U/RL:O

HOST TLSv1.3 TLSv1.2 TLSv1.1 TLSv1.0 SSLv3 SSLv2 SSLv1

https://www.example.com ⚠️ ⚠️ 🚫 🚫 🚫 ✅ ✅

https://shop.example.com ⚠️ ✅ 🚫 🚫 ✅ ✅ ✅

Table 7 - SSL/TLS protocol versions used

Legend

The graphical categorization of the upper table was done in three different levels:

✅ is correctly configured (active, when safe; inactive, when unsafe)

⚠️ is considered safe and is not used

🚫 is considered unsafe and is used

References

https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-
layer-security-2.1

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

https://www.ssllabs.com

https://ssl-config.mozilla.org/

•

•

•

•

•

•

•

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 26 of 36

https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://www.ssllabs.com
https://ssl-config.mozilla.org/

6 Appendix

6.1 Contact persons

A1 Digital International GmbH & Co KG

Name Role Telephone Email

Alice Codex Lead +431234567890 ask.security@a1.digital

Bob Binary Pentester +431234567890 ask.security@a1.digital

Trent Trustworthy Reviewer +431234567890 ask.security@a1.digital

Table 8 - Contact persons at A1 Digital International GmbH & Co KG

Example GmbH

Name Telephone Email

Jane Doe +4312345678901 jd@example.com

Maximilian Muster +4312345678902 mm@example.com

Table 9 - Contact persons at Example GmbH

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 27 of 36

6.2 CVSS v3.1 metrics
CVSS comprises three metric groups: Base, Temporal and Environmental as shown in the figure below:

Base Metric Group

The Base Metric Group expresses the fundamental risk of a weakness and assesses the vulnerable
component. No valid CVSS value can be formed without a Base Metric. In turn the Base Metric is divided into
Exploitability Metrics and Impact Metrics.

The Exploitability Metric reflects the ease and required pre-requisites for successful utilisation of the
weakness.

The Impact Metric on the other hand reflects the direct consequence of the successful utilisation of the weak
point - is the confidentiality, integrity or availability of the affected data/ of the affected system endangered?

Metric Possible Values

Attack Vector (V) - attack vector Network (N), Adjacent (A), Local (L), Physical (P)

Attack Complexity (AC) - attack complexity Low (L), High (H)

Privileges Required (PR) - privileges required None (N), Low (L), High (H)

User Interaction (UI) - required user interaction None (N), Required (R)

Scope (S) - affected area Changed (C), Unchanged (U)

Confidentiality Impact (C) - loss of confidentiality None (N), Low (L), High (H)

Integrity Impact (I) - loss of integrity None (N), Low (L), High (H)

Availability Impact (A) - loss of availability None (N), Low (L), High (H)

Table 10 - Overview of Base Metric Group

Base Metric Group
Exploitability metrics Impact metrics

Attack Vector

Attack Complexity

Privileges Required

Scope

User Interaction

Confidentiality Impact

Integrity Impact

Availability Impact

Temporal Metric
Group

Exploit Code
Maturity

Remediation Level

Report Confidence

Environmental Metric
Group

Confidentiality
Requirement

Modified Base
Metrics Integrity

Requirement

Requirement
Availability

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 28 of 36

Temporal Metric Group

The Temporal Metric Group expresses the characteristics of a weak point which may change over time. For
example after some time an ofÏcial patch may be published, which would reduce the Temporal Score.

Metric Possible Values

Exploit Code Maturity (E) - degree of maturity of the
exploit code present

Not Defined (X), High (H), Functional (F), Proof
of Concept (P), Unproven (U)

Remediation Level (RL) - countermeasures present
Not Defined (X), Unavailable (U), Workaround
(W), Temporal Fix (T), OfÏcial Fix (O)

Report Confidence (RC) - measures the reliability of the
available information regarding the weakness

Not Defined (X), Confirmed (C), Reasonable
(R), Unknown (U)

Table 11 - Overview of Temporal Metric Group

Environmental Metric Group

The Environmental Metric Group is specially set for the user environment. This metric allows the adaptation
of the scores with respect to the importance of an affected system for the user/customer. The adjustment is
done based on the requirements for confidentiality, integrity and availability.

Metric Possible Values

Confidentiality Requirement (CR) - requirement for
confidentiality

Network (N), Adjacent (A), Local (L),
Physical (P)

Integrity Requirement (IR) - requirement for integrity Low (L), High (H)

Availability Requirement (AR) - requirement for availability None (N), Low (L), High (H)

Table 12 - Overview of Environmental Metric Group

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 29 of 36

Modified Base Metric Group

In addition, the base metrics can be shown as a modified value (modified base metric). This can be used to
describe situations which increase the base score. For example a component could require multiple factors
for authentication as standard (PR: High) in order to reach specific resources, whereas in the test
environment no authentication was required (PR: None).

Metric Possible Values

Modified Attack Vector (MAV)

The same values as the associated base metrics
+ not defined (N).

Modified Attack Complexity (MAC)

Modified Privileges Required (MPR)

Modified User Interaction (MUI)

Modified Scope (MS)

Modified Confidentiality (MC)

Modified Integrity (MI)

Modified Availability (MA)

Table 13 - Overview of Modified Base Metric Group

Detailed information regarding the base, temporal and environmental metrics and their values are available
on the first.org website. 2

6.3 Text representation of CVSS v3.1 scores
In most cases it is helpful to have a text representation of the numerical CVSS scores. Each individual metric
(Base, Temporal and Environmental) can be brought into text form using the following table. 3 4

Severity CVSS Score

None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

Table 14 - Text representation of CVSS v3.1 scores

2. https://www.first.org/cvss/v3.1/specification-document
3. https://nvd.nist.gov/vuln-metrics/cvss
4. https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 30 of 36

https://www.first.org/cvss/v3.1/specification-document
https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

6.4 List of Tables
Table 1 - Change record . 2

Table 2 - Overview of weaknesses . 6

Table 3 - Weakness categorisation . 7

Table 4 - Systems tested . 9

Table 5 - Output encoding of special characters . 18

Table 6 - Set Security Headers . 24

Table 7 - SSL/TLS protocol versions used . 26

Table 8 - Contact persons at A1 Digital International GmbH & Co KG . 27

Table 9 - Contact persons at Example GmbH . 27

Table 10 - Overview of Base Metric Group . 28

Table 11 - Overview of Temporal Metric Group . 29

Table 12 - Overview of Environmental Metric Group . 29

Table 13 - Overview of Modified Base Metric Group . 30

Table 14 - Text representation of CVSS v3.1 scores . 30

6.5 List of Figures
Figure 1 - Distribution of identified vulnerabilities . 6

Figure 2 - Chart of weakness count per Category . 7

Figure 3 - Implementation concept for penetration tests 1 . 10

Figure 4 - All user data is queried by exploiting an SQL injection vulnerability 12

Figure 5 - Request to the application which causes an SQL error . 12

Figure 6 - Response showing the SQL error store.example.com . 13

Figure 7 - Illustration of Cross-Site Request Forgery . 15

Figure 8 - Subdomain Takeover of https://takeover.example.com . 16

Figure 9 - Illustration of Reflected XSS . 19

Figure 10 - Reflected XSS on example.com . 20

Figure 11 - Tomcat version of the webshop server . 21

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 31 of 36

6.6 OWASP Testing Guide Version 4.2

Information Gathering

Conduct Search Engine Discovery Reconnaissance for Information Leakage (WSTG-INFO-01)

Fingerprint Web Server (WSTG-INFO-02)

Review Webserver Metafiles for Information Leakage (WSTG-INFO-03)

Enumerate Applications on Webserver (WSTG-INFO-04)

Review Webpage Content for Information Leakage (WSTG-INFO-05)

Identify Application Entry Points (WSTG-INFO-06)

Map Execution Paths Through Application (WSTG-INFO-07)

Fingerprint Web Application Framework (WSTG-INFO-08)

Fingerprint Web Application (WSTG-INFO-09)

Map Application Architecture (WSTG-INFO-10)

Configuration and Deployment Management Testing

Test Network Infrastructure Configuration (WSTG-CONF-01)

Test Application Platform Configuration (WSTG-CONF-02)

Test File Extensions Handling for Sensitive Information (WSTG-CONF-03)

Review Old Backup and Unreferenced Files for Sensitive Information (WSTG-CONF-04)

Enumerate Infrastructure and Application Admin Interfaces (WSTG-CONF-05)

Test HTTP Methods (WSTG-CONF-06)

Test HTTP Strict Transport Security (WSTG-CONF-07)

Test RIA Cross Domain Policy (WSTG-CONF-08)

Test File Permission (WSTG-CONF-09)

Test for Subdomain Takeover (WSTG-CONF-10)

Test Cloud Storage (WSTG-CONF-11)

Identity Management Testing

Test Role Definitions (WSTG-IDNT-01)

Test User Registration Process (WSTG-IDNT-02)

Test Account Provisioning Process (WSTG-IDNT-03)

Testing for Account Enumeration and Guessable User Account (WSTG-IDNT-04)

Testing for Weak or Unenforced Username Policy (WSTG-IDNT-05)

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 32 of 36

Authentication Testing

Testing for Credentials Transported over an Encrypted Channel (WSTG-ATHN-01)

Testing for Default Credentials (WSTG-ATHN-02)

Testing for Weak Lock Out Mechanism (WSTG-ATHN-03)

Testing for Bypassing Authentication Schema (WSTG-ATHN-04)

Testing for Vulnerable Remember Password (WSTG-ATHN-05)

Testing for Browser Cache Weaknesses (WSTG-ATHN-06)

Testing for Weak Password Policy (WSTG-ATHN-07)

Testing for Weak Security Question Answer (WSTG-ATHN-08)

Testing for Weak Password Change or Reset Functionalities (WSTG-ATHN-09)

Testing for Weaker Authentication in Alternative Channel (WSTG-ATHN-10)

Authorization Testing

Testing Directory Traversal File Include (WSTG-ATHZ-01)

Testing for Bypassing Authorization Schema (WSTG-ATHZ-02)

Testing for Privilege Escalation (WSTG-ATHZ-03)

Testing for Insecure Direct Object References (WSTG-ATHZ-04)

Session Management Testing

Testing for Session Management Schema (WSTG-SESS-01)

Testing for Cookies Attributes (WSTG-SESS-02)

Testing for Session Fixation (WSTG-SESS-03)

Testing for Exposed Session Variables (WSTG-SESS-04)

Testing for Cross Site Request Forgery (WSTG-SESS-05)

Testing for Logout Functionality (WSTG-SESS-06)

Testing Session Timeout (WSTG-SESS-07)

Testing for Session Puzzling (WSTG-SESS-08)

Testing for Session Hijacking (WSTG-SESS-09)

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 33 of 36

Input Validation Testing

Testing for Reflected Cross Site Scripting (WSTG-INPV-01)

Testing for Stored Cross Site Scripting (WSTG-INPV-02)

Testing for HTTP Verb Tampering (WSTG-INPV-03)

Testing for HTTP Parameter Pollution (WSTG-INPV-04)

Testing for SQL Injection (WSTG-INPV-05)

Testing for LDAP Injection (WSTG-INPV-06)

Testing for XML Injection (WSTG-INPV-07)

Testing for SSI Injection (WSTG-INPV-08)

Testing for XPath Injection (WSTG-INPV-09)

Testing for IMAP SMTP Injection (WSTG-INPV-10)

Testing for Code Injection (WSTG-INPV-11)

Testing for Command Injection (WSTG-INPV-12)

Testing for Format String Injection (WSTG-INPV-13)

Testing for Incubated Vulnerability (WSTG-INPV-14)

Testing for HTTP Splitting Smuggling (WSTG-INPV-15)

Testing for HTTP Incoming Requests (WSTG-INPV-16)

Testing for Host Header Injection (WSTG-INPV-17)

Testing for Server-side Template Injection (WSTG-INPV-18)

Testing for Server-Side Request Forgery (WSTG-INPV-19)

Testing for Error Handling

Testing for Improper Error Handling (WSTG-ERRH-01)

Testing for Stack Traces (WSTG-ERRH-02)

Testing for weak Cryptography

Testing for Weak Transport Layer Security (WSTG-CRYP-01)

Testing for Padding Oracle (WSTG-CRYP-02)

Testing for Sensitive Information Sent via Unencrypted Channels (WSTG-CRYP-03)

Testing for Weak Encryption (WSTG-CRYP-04)

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 34 of 36

Business Logic Testing

Test Business Logic Data Validation (WSTG-BUSL-01)

Test Ability to Forge Requests (WSTG-BUSL-02)

Test Integrity Checks (WSTG-BUSL-03)

Test for Process Timing (WSTG-BUSL-04)

Test Number of Times a Function Can Be Used Limits (WSTG-BUSL-05)

Testing for the Circumvention of Work Flows (WSTG-BUSL-06)

Test Defenses Against Application Misuse (WSTG-BUSL-07)

Test Upload of Unexpected File Types (WSTG-BUSL-08)

Test Upload of Malicious Files (WSTG-BUSL-09)

Client Side Testing

Testing for DOM-Based Cross Site Scripting (WSTG-CLNT-01)

Testing for JavaScript Execution (WSTG-CLNT-02)

Testing for HTML Injection (WSTG-CLNT-03)

Testing for Client-side URL Redirect (WSTG-CLNT-04)

Testing for CSS Injection (WSTG-CLNT-05)

Testing for Client-side Resource Manipulation (WSTG-CLNT-06)

Testing Cross Origin Resource Sharing (WSTG-CLNT-07)

Testing for Cross Site Flashing (WSTG-CLNT-08)

Testing for Clickjacking (WSTG-CLNT-09)

Testing WebSockets (WSTG-CLNT-10)

Testing Web Messaging (WSTG-CLNT-11)

Testing Browser Storage (WSTG-CLNT-12)

Testing for Cross Site Script Inclusion (WSTG-CLNT-13)

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 35 of 36

7 Imprint

A1 Digital International GmbH & Co KG

Business area: Machine-to-machine communication services, IT solutions, devices and other associated
products and services
UID number: ATU 82193323

Representative persons:
Dr. Elisabetta Castiglioni (CEO)
Martin Schiffmann (CFO)

FB number: 654840a
Company legal jurisdiction: HG Vienna
Company headquarters: Vienna
Address: Lassallestraße 9, A-1020 Vienna
Contact details: Telephone: (+43) 5 06640; E-Mail: info@a1.digital
Chamber membership: Wirtschaftskammer Wien
Applicable legal regulations: Telecommunication laws: www.ris.bka.gv.at
Regulatory authority/commercial authorities: Österreichische Regulierungsbehörde für Rundfunk und
Telekommunikation (RTR GmbH)

Security test of Example - Web Application
Example GmbH
Classification: Confidential
Version: 1.0

© A1 Digital International GmbH & Co KG

ask.security@a1.digital | www.a1.digital

Page 36 of 36

	Security-Assessment
	Security test of Example - Web Application

	Change record
	Table of Contents
	Management Summary
	Results
	Recommended next steps
	Overview of weaknesses
	Weakness categorisation
	Disclaimer

	Scope
	Systems tested
	User accounts used

	Procedure
	Risk assessment according to CVSSv3.1

	Identified weaknesses
	Blind SQL Injection
	Cross-Site Request Forgery (CSRF)
	Subdomain Takeover
	Reflected Cross-Site-Scripting (XSS)
	Outdated Tomcat Installation
	Missing Security Headers
	Weak SSL/TLS Configuration

	Appendix
	Contact persons
	A1 Digital International GmbH & Co KG
	Example GmbH

	CVSS v3.1 metrics
	Base Metric Group
	Temporal Metric Group
	Environmental Metric Group
	Modified Base Metric Group

	Text representation of CVSS v3.1 scores
	List of Tables
	List of Figures
	OWASP Testing Guide Version 4.2

	Imprint
	A1 Digital International GmbH & Co KG

